
RP 0804.3 Real-Time Protocol for Full Motion Video 1

1 Scope

This Recommended Practice (RP) documents the standards profile for packaging and delivering

Full Motion Video (FMV as defined in MISP 4.5 and later) data over the Real-Time Protocol

(RTP). This RP provides direction on the packetization and streaming of video and metadata

using RTP to support diverse IP based networks.

The scope of this RP is limited to delivery of Full Motion Video products and is not intended to

replace any other approved standards for other uses; rather it is intended to complement those

standards.

2 References

2.1 Normative References

[1] ISMA 2.0, Internet Streaming Media Alliance Implementation Specification, April

 2005

[2] RFC 3550, RTP: A Transport Protocol for Real-Time Applications, July 2003

[3] RFC 3551, RTP Profile for Audio and Video Conferences with Minimal Control,

 July 2003

[4] ISO/IEC 13818-2: 2000, Information Technology – Generic coding of moving

 pictures and associated audio information: Video

[5] ITU-T Rec. H.264 Advanced Video Coding for Generic Audio Visual Services,

 03/2009. (ISO/IEC 14496-10:2009)

[6] MISB EG 0802, H.264/AVC Coding and Multiplexing, May 2009

[7] MISB EG 0104.5, Predator UAV Basic Universal Metadata Set, May 2008

[8] MISB STANDARD 0601.4, UAS Datalink Local Metadata Set, March 2010

[9] MISB STANDARD 0902.1, MISB Minimum Metadata Set, June 2010

[10] MISB STANDARD 0604.1, Time Stamping Compressed Motion Imagery,

 September 2009

[11] SMPTE 336M-2007, Data Encoding Protocol Using Key-Length-Value

Recommended Practice

Real-Time Protocol for Full Motion Video

MISB RP 0804.3

30 September 2010

RP 0804.3 Real-Time Protocol for Full Motion Video 2

[12] MISB RP 0701 Common Metadata System: Structure, August 2007

[13] RFC 2250, RTP Payload Format for MPEG1/MPEG2 Video, January 1998

[14] DVB IP Phase 1 handbook, ETSI TS 102 034, Digital Video Broadcasting (DVB);

 Transport of MPEG-2 Based DVB Services over IP Based Networks, March 2005

[15] RFC 3984, RTP Payload Format for H.264 Video, February 2005

[16] RFC 2326, Real Time Streaming Protocol (RTSP), April 1998

[17] RFC 2327, SDP: Session Description Protocol, April 1998

[18] SMPTE 2022-2-2007, Unidirectional Transport of Constant Bit Rate MPEG-2

 Transport Streams on IP Networks

[19] Pro-MPEG Code of Practice #3 release 2 July 2004, Transmission of

 Professional MPEG-2 Transport Streams over IP Networks

[20] draft-ietf-avt-rtp-klv-00.txt, RTP Payload Format for SMPTE 336M Encoded Data

2.2 Informative References

[21] SMPTE 335M-2001, Metadata Dictionary Structure

[22] SMPTE RP210.8-2004, Metadata Dictionary

[23] SMPTE RP210.7-2003, Metadata Dictionary

[24] SMPTE RP210.3-2001, Metadata Dictionary (DRAFT)

[25] MISP 5.1, Motion Imagery Standards Profile, May 2008

[26] MISB RP 0101, Use of MPEG-2 Systems Streams in Digital Motion Imagery

 Systems

[27] MISB RP 0103.1, Timing Reconciliation Metadata Set for Digital Motion

 Imagery, 11 October 2001

[28] MISB RP 0107, Bit and Byte Order for Metadata in Motion Imagery Files and

 Streams, 11 October 2001

[29] MISB TRM-07A, Low Bandwidth Motion Imagery – Technologies, November 2007

[30] IP Streaming of MPEG-4: Native RTP vs. MPEG-2 Transport Stream, envivio,

 October 2005

[31] RTP - Audio and Video for the Internet, Colin Perkins, November 2006

3 Acronyms

DTS Decode Time Stamp

FMV Full Motion Video

H.264/AVC MPEG-4 Part 10 Video Codec

IP Internet Protocol

ISMA Internet Streaming Media Alliance

RP 0804.3 Real-Time Protocol for Full Motion Video 3

MPEG2 TS MPEG2 Transport Stream

PTS Presentation Time Stamp

RTP Real Time Protocol

RTP/AVP IETF’s RTP using Audio/Video profile carried over UDP

RTCP Real Time Control Protocol

RTSP Real Time Streaming Protocol

SAP Session Announcement Protocol

SDP Session Description Protocol

TCP Transmission Control Protocol

UDP User Datagram Protocol

URL Uniform Resource Locator

4 Introduction

This RP defines the standards profile used to provide FMV to users via RTP over IP (Internet

Protocol) based networks. The scope of what this RP is attempting to provide is very broad, and

given the wide variety of infrastructure, client device, user requirements, and other

considerations, it does not attempt to specifically address all possible configurations. Rather, this

RP focuses on the standards that provide broad flexibility, and reference implementation

guidance for RTP to determine how to best apply it for specific needs.

Unlike MPEG2 Transport Stream (TS), RTP does not support the multiplexing of media streams

together within one unified package; each media stream is carried as a separate RTP stream.

Therefore, each RTP media stream must contain sufficient timing information for synchronizing

related streams at the receiver. Mapping a video elementary stream, such as an encoded MPEG2

or H.264/AVC elementary stream directly to RTP is called native RTP carriage. MPEG-2

transport stream can also be carried over RTP. MPEG-2 TS over RTP requires additional header

overhead. Because both types of carriage are found in practice they will be included here for

completeness.

Following a brief overview of the features and relations to existing standards of RTP, section 6

describes native RTP carriage of MPEG2 and H.264/AVC, while section 7 describes carriage of

MPEG2 transport stream media over RTP. In section 8, guidelines for mapping the individual

media components of a MPEG2 transport stream to individual RTP streams are given.

Streaming technologies to support timed RTP media are discussed in section 10.

Appendix A provides guidelines for implementing metadata over RTP. This implementation is

based on an IETF (Internet Engineering Task Force) draft currently in application [20]. Example

software code is available for download from the MISB web site.

4.1 RTP FMV Features

RTP has been designed to accommodate the nuances of internet-centric multimedia streaming. It

offers the following capabilities:

RP 0804.3 Real-Time Protocol for Full Motion Video 4

 Delivery of digital motion video over various network and link types that may exhibit

packet loss, packet re-ordering, latency, and jitter.

 A standardized method for requesting an RTP stream from a digital motion video

provider.

 A standardized method for stream control to allow trick play.

 Authentication and encryption of data to provide integrity, confidentiality and non-

repudiation.

 Provisions for lowering the overhead associated with packetizing and streaming data.

4.2 Relationship with established Internet Standards

The Internet provides a good example of the challenges faced when delivering data over

disparate best-effort networks of varying qualities. ISMA [1] defines a set of standards for

storage and streaming of media over the Internet; this RP aligns itself with that family of

standards.

4.3 Relationship with established MISB Standards

The following figure illustrates the relationships between the current MISP standards and those

in this document.

Figure 1 - RTP Relationship with Current MISP Standards (colored for visual aid)

Low-bandwidth digital motion imagery is intended to align with established MISP standards

where appropriate; however, more optimal protocols are emerging for Internet use. Evaluation

and adoption of new standards for more robust delivery is encouraged as part of the regular

activity of the MISB.

4.4 Transport

The Real-time Transport Protocol is used to transport (near) real-time digital motion video. RTP

provides end-to-end transport for media with real-time characteristics and is widely used in

Internet streaming media applications.

RP 0804.3 Real-Time Protocol for Full Motion Video 5

The following RFCs provide the core RTP specifications that MUST be implemented. Payload

specifications are detailed in following sections.

 RFC 3550 - RTP: A Transport Protocol for Real-Time Applications [2]

 RFC 3551 - RTP Profile for Audio and Video Conferences with Minimal Control [3]

Interleaved RTSP and RTP/AVP over TCP is an OPTIONAL method for transport. This method

offers reliable transmission and more easily traverses Network Address Translation (NAT)

devices and Firewalls at the expense of real-time time-critical response.

5 Data Formats

To provide broad applicability for devices that may only need one media component of the

available data a client SHALL support both video and metadata delivery and MAY support

audio. This RP will address video and metadata only.

5.1 Video

The REQUIRED codecs in this document are MPEG2 [4] and MPEG4 Part 10 H.264/AVC [5].

Coding parameters for H.264/AVC are defined in corresponding MISB Engineering Guideline

EG 0802, H.264/AVC Coding and Multiplexing [6].

5.2 Metadata

The approved metadata sets are set forth in MISB EG 0104 [7], MISB STANDARD 0601 [8],

and MISB STANDARD 0902[9] EG0104 specifies a mapping for Cursor on Target (CoT) data,

which can be mapped for use in STANDARD 0601. Metadata that is time synchronized to the

video is preferred over asynchronous methods. Time stamping of H.264/AVC video is described

in MISB STANDARD 0604 [10]. RTP has provisions to carry a local timestamp for each media

stream it carries, so although the video and the metadata will maintain independent timestamps

the two streams can still be realigned at the decoder.

Metadata consistent with these Engineering Guidelines is encoded using the KLV (Key, Length,

Value) construct according to SMPTE 336M-2001 [11].

The MISB-approved metadata structures include STANDARD 0902, Motion Imagery Sensor

Minimum Metadata Set [9], STANDARD 0601, UAS Datalink Local Metadata Set [8], and RP

0701, Common Metadata System: Structure [12].

6 Native RTP Carriage of MPEG2 and H.264

MPEG2 native carriage over RTP specified by the IETF in [13] and by the DVB-IPI group in

[14], and H.264/AVC native carriage over RTP specified in [15] with additional guiding

parameter elections in EG 0802 [6] can be used with the following restrictions:

RP 0804.3 Real-Time Protocol for Full Motion Video 6

 The interleaved mode (packetization-mode=2) SHALL NOT be used, while the

interleaved modes (packetization-mode=0, 1) SHALL be supported (guarantees

lower latency).

 The parameters that are defined for interleaved mode (packetization-mode=2)

SHALL NOT be present in the ―a=fmtp‖ line in the SDP.

 The parameters max-mbps, max-fs, max-dpb, max-br SHALL NOT be present

in the ―a = fmtp‖ line of the SDP. These parameters extend the capabilities of a

particular level specified by profile-level-id, but not all receivers may be able to

decode streams beyond the profile-leve;-id specified.

 The format parameters line (―a=fmtp‖) in the SDP SHALL include the

following parameters: sprop-parameters-sets, profile-level-id

 It is RECOMMENDED that the Sequence Parameter Set and Picture Parameter

Set defined in [5] be carried in-band within the elementary stream. This should

convey the same information as represented by sprop-parameter-sets.

 The SDP data MUST NOT change within a stream. If such a change is

warranted a new SDP is issued and the stream restarted after the SDP data is

communicated to the client.

7 RTP Carriage of MPEG2 Transport Stream

The RFC2250 [13] mapping shall be used as it provides a suitable mapping for MPEG-2

Transport Streams with further restrictions on RFC3550 and RFC2250 specified in [18] and [19].

Transport Stream over RTP incurs more overhead and increases the stream bit rate. There are

benefits in transporting MPEG-2 TS over RTP because the packet count and time stamp in the

RTP header offer a receiver the ability to detect lost and out-of-order packets, and in quantifying

the jitter in packets received. Transport Stream over RTP may also be useful to transition from

legacy tools, or to connect between points where such protocols may be difficult to modify.

8 RTP Carriage of Metadata

The MISB has submitted a draft IETF submission for a RTP Profile for KLV Encoded Metadata

[20]. Reference to this document is made for native carriage of metadata. Appendix A further

illustrates an implementation of this draft.

9 Native RTP Streams from MPEG2 TS Elementary Streams

MPEG2 transport stream allows a number of elementary media streams to be multiplexed

together and carried as a unified synchronized package. This RP limits the media types that can

be demultiplexed from a transport stream and produce individual RTP streams to video (MPEG2

and H.264) and metadata. While there is no reason that other media types multiplexed in a

RP 0804.3 Real-Time Protocol for Full Motion Video 7

MPEG2 TS stream, for example audio, cannot be similarily produced as an RTP stream RTP, at

this time only video and metadata are considered.

Component media streams within a MPEG2 transport stream are synchronized together through

the presentation time stamp (PTS) and decode time stamp (DTS) that accompanies each

component (video, audio, metadata) packetized elementary stream (PES). The DTS directs the

decoder when to decode the Presentation Unit (video picture, audio frames, etc.) of a particular

media stream, while the PTS indicates when the decoded Presentation Unit is to be passed to the

output device for display. The PTS thus provides a suitable timing reference that can be mapped

as the timing reference for a corresponding RTP stream.

Guidance for mapping a video packetized stream to RTP can be found in [13] with mapping of

the PTS to RTP timestamp stated as:

“Presentation Time Stamps (PTS) of 32 bits with accuracy of 90 kHz shall be carried in

the fixed RTP header. All packets that make up a [video] frame shall have the same time

stamp.”

Note: metadata will be mapped in a similar fashion referencing its corresponding PTS for

synchronous carriage of metadata (see MISB STANDARD 0604 Time Stamping Compressed

Motion Imagery [10]).

When a transport stream contains two or more component media streams that are to be produced

as two or more RTP streams, for example, a video elementary stream and a private data stream

(metadata), the Real Time Control Protocol (RTCP) should be used to support synchronization

between the two media streams. RTCP provides a common reference clock (wall clock) shared

by the individual media streams, and thus provides for resynchronization of the component

streams at the decoder. Section 10.1 more fully describes RTCP.

10 Supporting Streaming Components

At a high level a motion imagery architecture consists of a data provider or source of motion

imagery plus audio, metadata, etc. media components, and a data receiver of one or more of

these same media components. These media components are typically synchrozied to one

another; that is, the events occuring within a media correlate directly with events in the other

media components. Lip sync is an example, where the mouth movements should correspond

with the audio words spoken. RTCP (Real Time Control Protocol) is used to provide this

synchronization between media components.

Stream playback control for play, stop, rewind, and fast forward is provided by a second protocol

called RTSP (Real Time Streaming Protocol). Application needs will determine if either or both

of these supporting protocols are warranted. Simpler configurations for single media

communication with no control for instance—video or metadata only streams—can be done

using RTP alone. In these cases, RTP’s value is providing time stamp and packet count

information useful in compensating for lost and re-ordered packets and network jitter.

RP 0804.3 Real-Time Protocol for Full Motion Video 8

The term ―client‖ is used to refer to the endpoint receiving data from some data producer; this

can be an end user (e.g., Warfighter) or another system.

10.1 Real Time Control Protocol (RTCP)

RTCP is an extremely useful companion protocol that provides bi-directional feedback between

the sender and the receiver regarding the quality of a RTP session. As an example, RTCP allows

a sender to provide a receiver a timing reference and how many bytes and packets have been

sent. It allows a receiver to inform a sender about the quantity of packets lost, and a measure of

the packet arrival jitter. RTCP usually accompanies streams delivered using RTP as a data

carrier, and thus industry equipment may not function without it. At a minimum, servers SHALL

emit RTCP sender reports (SR).

RTP time stamps, present in the RTP header, represent the sampling instant of the first octet of

data in a media frame (video frame for example). The method to synchronize content

transported in RTP is described RFC 3550 [2]. A simplified summary given for the

synchronization of video and metadata is given below:

1. The RTP time stamp is expressed in units of a clock, which is required to increase

monotonically and linearly. The frequency of this clock is specified for each payload

format, either explicitly or by default. Often, but not necessarily, this clock is the

sampling clock.

2. RTCP data is carried in RTCP packets. There are five types of RTCP packets, one of

which is the Sender Report (SR) RTCP packet type. Each RTCP SR packet contains

an RTP time stamp and an NTP time stamp; both time stamps correspond to the same

instant in time. However, the RTP time stamp is expressed in the same units as RTP

time stamps in data packets, while the NTP time stamp is expressed in "wallclock"

time; see clause 4 of RFC 3550 [2].

3. Synchronized playback of streams is only possible if the streams use the same wall-

clock to encode NTP values in SR packets. If the same wall-clock is used, receivers

can achieve synchronization by using the correspondence between RTP and NTP

time stamps. To synchronize a video stream and a metadata stream, one needs to

receive an RTCP SR packet relating to the video stream, and an RTCP SR packet

relating to the metadata stream. These SR packets provide a pair of NTP timestamps

and their corresponding RTP timestamps that is used to align the media.

The update rate of RTCP sender packets is typically 5 sec, which means that upon entering a

streaming session there may be an initial delay—on average a 2.5 sec duration if the default

RTCP timing rules are used—when the receiver does not yet have the necessary information to

perform inter-stream synchronization.

RP 0804.3 Real-Time Protocol for Full Motion Video 9

10.2 Control

The Real Time Streaming Protocol (RTSP) provides an application level protocol to interactively

control the delivery of FMV digital motion imagery delivered via streaming. RTSP is defined in

the following specification:

 Real Time Streaming Protocol (RTSP) [16]

RTSP provides a flexible protocol framework for controlling data streams with real-time

properties. The following restrictions apply to ensure interoperability between endpoints

supporting FMV data streams when this level of control is required or desired:

REQUIRED

 RTSP clients and servers SHALL implement all required features of the minimal

RTSP implementation described in Appendix D of RFC 2326.

 RTSP clients and servers SHALL implement the PLAY method.

 RTSP clients and servers SHALL support RTP/AVP transport in the ―Transport‖

header. When the RTP/AVP transport is used for a unicast session, clients SHOULD

include the ―client_port‖ parameter in the ―Transport‖ header and servers SHOULD

include the ―server_port‖, ―source‖, and ―ssrc‖ parameters in the ―Transport‖ header.

 RTSP servers SHALL send the ―RTP-Info‖ header for unicast sessions.

 RTSP servers and clients SHALL support aggregated control of presentations.

 At most one RTSP session SHALL be ―active‖ on a connection between an RTSP

client and an RTSP server at any one time. An RTSP session becomes ―active‖ when

it is first referenced in a ―Session‖ header. An RTSP session is no longer ―active‖

after a TEARDOWN request has been issued for that session.

RECOMMENDED

 RTSP clients and servers SHOULD implement the DESCRIBE method. If the

DESCRIBE method is implemented, it is REQUIRED that SDP be supported as the

description format, as specified in Appendix C of RFC 2326[16].

 RTSP clients SHOULD generate the following RTSP headers when appropriate:

―Bandwidth‖, ―Cache-Control‖, ―If-Modified-Since‖, ―User-Agent‖. RTSP servers

SHOULD correctly interpret these headers when present.

 RTSP servers SHOULD generate the following RTSP headers when appropriate:

―Cache-Control‖, ―Expires‖, ―Last-Modified‖, ―Server‖. RTSP clients SHOULD

correctly interpret these headers when present.

RP 0804.3 Real-Time Protocol for Full Motion Video 10

10.3 Description and Addressing

Common to all setup and announcement protocols is the need for a means of describing the

session. One commonly used protocol is the Session Description Protocol (SDP), although other

mechanisms such as the Session Announcement Protocol (SAP) may be used. SDP provides a

flexible text-based language for describing media streams and relating them temporally. SDP

data SHALL be issued via FTP, SAP, RTSP, or HTTP. SDP is defined in the following

specification:

SDP: Session Description Protocol [17]

When present, the SDP data MUST be formatted according to Appendix C of RTSP (RFC

2326[16]) at all times. Although Appendix C provides compatibility when delivering an SDP

that will have media controlled via RTSP it allows for consistent formatting and attribute

parsing.

11 Sample RTSP/RTP Session

Figure 2 - RTSP/RTP Server/Client Communication

The following commands may be used to control a RTP session and are illustrated

as state and requests in Figure 3:

RP 0804.3 Real-Time Protocol for Full Motion Video 11

Figure 3 - Server/Client RTSP Interaction

DESCRIBE: Used by the client to retrieve a description of a presentation or

media object on the server, corresponding to the Universal Resource Locator

(URL) sent in the request. The response is typically in the form of the Session

Description Protocol (SDP) and gives details such as the encoding types of the

media, media duration, authors, etc. This command allows clients to find out

more about a clip prior to streaming and also to check if the client can support the

media format.

OPTIONS: Informs the sender what other valid requests it may issue i.e. what

requests are supported by the corresponding client or server for the specified

content at a given time. Illegal requests by either the client or server can be

avoided with this operation.

SETUP: Transport of the requested media is configured using this command.

Details such as the transport protocol and the port numbers to use are submitted to

the server so the content is delivered in a manner appropriate for the client.

PLAY: Tells the server to start transmitting the requested media content as

specified in the associated SETUP command. Unless a SETUP request has been

issued and acknowledged, it is illegal to call the PLAY command. The absolute

playback time and duration are also specified in this command so operation

similar to fast forward and rewind on a VCR can be achieved with this command

if the media can support such functionality e.g. live video streams cannot be

scanned ahead.

RP 0804.3 Real-Time Protocol for Full Motion Video 12

PAUSE: Temporarily interrupts the delivery of the media currently playing in

the session. PLAY must have been successfully requested in order to allow

pausing of a video stream to a client. Resuming a paused media session is

achieved using the PLAY request.

TEARDOWN: Terminates a stream or session. Once this command has been

successfully issued the SETUP request must be called again before media content

can be streamed again.

Other optional requests defined in the RTSP standard include ANNOUNCE,

SET_PARAMETER, GET_PARAMETER, RECORD and REDIRECT. States

for each session are maintained by the server to ensure that only valid requests are

processed and that an error response is replied to invalid requests. To aid the

server in determining if a request is valid a number of possible server states are

used:

1. Init: the initial state meaning that the server has received no valid SETUP

request.

2. Ready: the previous SETUP request was successful and acknowledged

and the server is waiting to start or finish playing or a valid PAUSE

request has been called.

3. Playing: a previous PLAY request was successful and content is currently

being streamed to the client.

Figure 3 illustrates an example RTSP interaction between a client and server,

highlighting the client and server states in response to different RTSP requests. In

the session shown, the clients asks for a description of some content contained on

the server using the DESCRIBE command and the server delivers information in

SDP format with relevant details of the media queried by the client. The client

then issues a SETUP request and the server configures the delivery of the stream

to suit the clients preferred setup. PLAY is then sent by the client and the server

starts transmitting the media data. A PAUSE request then prompts the server to

halt the stream temporarily and the server waits in the Ready state for the client

issue further instructions. Eventually the client requests PLAY and stream

resumes. Finally, the client sends a TEARDOWN request and the server

terminates the session and returns to the Init state waiting for other sessions to be

established.

Revision History

Date

March 25, 2008
Initial Draft of document; approved for public release November

2008

March 17, 2009 Added MP2TS over RTP; producing RTP streams from MPT2S

RP 0804.3 Real-Time Protocol for Full Motion Video 13

Version 1 multiplexed components

May 09, 2009
Added SMPTE 2022 and Pro-MPEG references; updated

references

May 20, 2010

Version 2
Added Appendix A reference implementation for metadata

Sep 30, 2010 Version 3

Language to: enforce SDP data need be communicated to

client(s); clarify RTCP as normally required; clarify

packetization-mode requirements; enforce SDP data remains

fixed per session. Updated references.

RP 0804.3 Real-Time Protocol for Full Motion Video 14

Appendix A RTP Payload Format for SMPTE 336M Encoded

 Data Implementation Guidance (Informative)

A.1 Background

This documents a proof-of-concept implementation based on the IETF draft submission RTP

Payload Format for SMPTE 336M Encoded Data [20], and is intended to serve as guidance for

future "production class" implementations.

A.2 Definitions

KLVunit a logical collection of all KLV items that are to be presented at a specific time. A

KLVunit is comprised of one or more KLV items. Compound items (sets, packs)

are allowed as per [SMPTE336M], but the contents of a compound item MUST

NOT be split across two KLVunits. Multiple KLV items in a KLVunit occur one

after another with no padding or stuffing between items.

A.3 Introduction

A client and a server implementation based on [20] are described in the following sections. To

permit rapid prototype development, both implementations utilized and extended existing

software applications. The guidance herein will be most directly applicable to implementers

seeking to expand an existing RTP-capable software package with KLV/SMPTE336M carriage

capability in accordance with [20]. However, completely new RTP implementations may also

benefit.

For ease of session creation and association of multiple, related RTP sessions (video, audio, and

KLV metadata) RTSP was used on both the client and server side of the implementation. RTSP

provides a means for a client to connect to a server, ask for a description of available RTP-

accessible media programs, and request that the server stream the media to the client over

negotiated lower-level transport protocols (generally, UDP over IP).

It is assumed that the reader is familiar with general RTP concepts. Such background material

can be found in [2,3,11,31].

A.4 Client Implementation

A.4.1 Basis for Implementation

The client implementation was constructed by extending an existing software package already

capable of initiating RTSP sessions, synchronizing, and playing back multiple RTP-based

sessions. Additionally, the software package could support SMPTE336M (KLV) parsing and

RP 0804.3 Real-Time Protocol for Full Motion Video 15

interpretation of relevant KLV items from non-RTP sources (MPEG2 TS files or network

streams, generally).

Because of the existing RTSP and RTP stack on the client end, as well as the capable KLV

parsing and interpretation, implementation work was isolated to two main components: 1)

extending the RTSP session initiation to recognize the KLV payload format in session

descriptions (SDP), and 2) handling the new KLV payload format at the individual RTP session

level.

A.4.2 Extension of RTSP Session Initiation

The client application already contained a table of known payload format type descriptions,

keyed on media type name (legal media type names can be found in the IANA RTP Parameters

Registry, http://www.iana.org/assignments/rtp-parameters). This table is used during RTSP

session initiation when parsing SDP descriptions of the RTP sessions available from the server.

Entries in the table map the media type name to several processes needed for that type of media

such as:

 Procedures to parse parameters in the SDP description that further describe the media's

format

 Procedures to handle RTP packet headers and payloads consistent with the media format

 Identifiers that indicate how the raw media data is processed once the RTP layer

processing is completed

Expanding the RTSP session initiation code to handle the new KLV payload format involved

simply adding a table entry for the corresponding media type described in the IETF draft [20]

("application/smpte336m"). The entry provides the above three pieces of information as detailed

below:

 Parsing Payload Format Parameters: The KLV payload format contains only one

parameter, the clock rate. This is a very standard RTP parameter common to many

payload formats. As such, the software already contained a re-usable routine to parse the

rate parameter and subsequently use it to interpret RTP packet timestamps in the KLV-

over-RTP session.

 Procedures to handle RTP Packet Headers and Payloads: Because of the similarities

between the KLV/SMPTE 336M payload format specification and other popular payload

formats, the implementation was able to re-use existing header and payload handling

functions for the new KLV payload format. The next section describes the similarities

and processing in further detail.

 Identifiers Indicating How to Process Raw Media: The software package already

contained a KLV parser and processing framework; because of this, processing of

KLVunits was simply mapped and routed to this pre-existing framework. See the next

section for additional details.

RP 0804.3 Real-Time Protocol for Full Motion Video 16

A.4.3 Handling of the KLV Payload Format at the RTP Session Level

Once RTSP negotiation is complete, the individual RTP sessions are established. This section

discusses the routines (mentioned briefly in the previous section) which handle the KLV/SMPTE

336M payload format.

RTP packet header and payload handling for the KLV payload format is based upon other

popular video payload formats. A KLVunit is the same as a video frame in concept: it is all the

data associated with a particular time, potentially spread across multiple RTP packet payloads for

transport efficiency. The handling of the M-bit in the RTP header also parallels that of popular

frame-based video formats. In addition, the KLV payload format does not define any additional

RTP or payload headers. Because of the similarity with other popular video formats already

supported by the software package, existing routines can be used without modification to provide

proper RTP packet processing. The effective outputs of these routines are KLVunits together

with their associated timestamps.

Once stripped of the RTP headers and concatenated as appropriate by the above-described

handling mechanisms into whole KLVunits, processing of the KLV data is precisely equivalent

to existing KLV processing and processing used with file or raw UDP network-based media.

There is little concern about recovery from lost packets and data given the robustness of the

existing KLV parser and processor. This downstream processor can deal with damaged

KLVunits similarly to corrupt or malformed portions of file-based KLV streams. For

implementations with error-intolerant KLV parsers, an additional step of discarding damaged

KLVunits may be necessary to prevent problems in subsequent processing.

A.5 Server Implementation

A.5.1 Basis for Implementation

The server implementation was built by modifying the open source application "VLC" by the

VideoLAN Project. VLC contains an RTP stack for streaming many popular video and audio

formats from file-based media or re-streaming from other network sources. It also contains an

RTSP server for session description and setup. This made it an ideal candidate for

implementing the SMPTE336M/KLV payload format for RTP through extension.

To provide a concrete example for the community, as well as maintaining consistency with the

open source philosophy that VLC is built upon, the actual source code modifications made to

implement the KLV payload format for RTP is available for download from the MISB website.

A.5.2 Server Considerations

The server implementation was scoped to implement the KLV payload format for RTP described

in [20] as a primary goal. To facilitate this, a data source had to be considered to provide the

data for streaming. VLC presently does not process KLV metadata, so consideration went into

support of various source data formats to avoid turning the RTP-oriented proof-of-concept into

the much larger project of generically supporting KLV streams in VLC.

RP 0804.3 Real-Time Protocol for Full Motion Video 17

Based on this, and the broad availability of test data, it was decided to support MPEG-2 transport

stream sources (from any source, including file or network) containing asynchronous KLV in

private data streams (in accordance with SMPTE RP217) as the source for data to stream. VLC's

transport stream demultiplexer needed to be modified to recognize and support KLV data.

Although MPEG-2 transport streams containing synchronous metadata would have proved a

more accurate data source, asynchronous data sources were chosen because of the wide-spread

availability of data samples.

A.5.3 MPEG-2 Transport Stream Demultiplexer Modifications

As mentioned above, VLC does not contain any notion of KLV metadata processing. While a

complete description of the modifications necessary to provide this support is out of scope for

this document, a brief discussion is provided for the purpose of conveying background context to

the available download of the overall KLV payload format for RTP server-side implementation.

Routines were added to detect the registration format descriptor ("KLVA") in private data stream

descriptions that indicate a SMPTE RP217 compliant KLV private data stream.

VLC does not contain a track "category" for metadata. Rather than complicating this rapid-

prototype project with adding a new track category, it was decided to use the subtitles track

category. Any detected KLV streams were mapped to subtitle-category tracks with the FourCC

codec code "klva".

Routines were also added to the transport stream demulitiplexer to synthesize timestamps (based

on the best-approximation stream proximity) of the otherwise timestamp-less asynchronous KLV

data. The timestamps are used for further downstream delivery timing, and eventually used to

populate RTP packet header timestamps.

A.5.4 KLV Stream-Out Packetizer

VLC's main streaming module (regardless of streaming protocol) is the "stream output" module.

Prior to media being streamed, it is sent through a "packetizer" module. The packetizer creates

basic payload units used by the streaming modules.

In the KLV payload format, the basic payload unit is the "KLVunit". As described in the client

implementation above, the KLVunit is conceptually equivalent to a "frame" for video in that it

contains all the data relevant to a given instant in time. Thus, a packetizer for KLV was authored

to collect and concatenate any disjoint KLV data with the same timestamp.

This module ensures that the RTP output module receives whole KLVunits for output

processing, thus completely taking care of the preparation for insertion into RTP packet

payloads.

A.5.5 RTSP SDP Output

An RTSP client requests a description of the available RTP sessions when it connects to an

RTSP server. To properly describe an available KLV session in accordance with the

SMPTE336M/KLV payload format specification, an addition to the SDP synthesis code was

RP 0804.3 Real-Time Protocol for Full Motion Video 18

added to map VLC streams with an internal codec identifier of "klva" to a media type code of

"application/smpte336m".

The only payload format parameter for the KLV payload format is the clock rate; because this is

such a common parameter, VLC already defaults this appropriately for all RTP stream

descriptions.

A.5.6 RTP Packet Header and Payload Creation

The KLV payload format is very similar in its use of the RTP header (timestamp, M-bit) to most

popular video payload formats (this is described in further detail in the client implementation

guidance above). Because of this similarity, and the fact that VLC already supports RTP

streaming of many popular video formats, it was possible to reuse existing packet creation

functionality.

The existing packet creation function, intended primarily to take video frames and create one or

more RTP packets, could be directly applied to a KLVunit.

It is expected that most existing, robust RTP implementations can be extended to support the

KLV payload format by reusing existing functionality in this way.

	1 Scope
	2 References
	2.1 Normative References
	2.2 Informative References

	3 Acronyms
	4 Introduction
	4.1 RTP FMV Features
	RTP has been designed to accommodate the nuances of internet-centric multimedia streaming. It offers the following capabilities:
	4.2 Relationship with established Internet Standards
	4.3 Relationship with established MISB Standards
	4.4 Transport
	5 Data Formats
	5.1 Video
	5.2 Metadata
	6 Native RTP Carriage of MPEG2 and H.264
	7 RTP Carriage of MPEG2 Transport Stream
	8 RTP Carriage of Metadata
	9 Native RTP Streams from MPEG2 TS Elementary Streams
	10 Supporting Streaming Components
	10.1 Real Time Control Protocol (RTCP)
	10.2 Control
	10.3 Description and Addressing
	11 Sample RTSP/RTP Session
	Appendix A RTP Payload Format for SMPTE 336M Encoded Data Implementation Guidance (Informative)
	A.1 Background
	A.2 Definitions
	A.3 Introduction
	A.4 Client Implementation
	A.4.1 Basis for Implementation
	A.4.2 Extension of RTSP Session Initiation
	A.4.3 Handling of the KLV Payload Format at the RTP Session Level

	A.5 Server Implementation
	A.5.1 Basis for Implementation
	A.5.2 Server Considerations
	A.5.3 MPEG-2 Transport Stream Demultiplexer Modifications
	A.5.4 KLV Stream-Out Packetizer
	A.5.5 RTSP SDP Output
	A.5.6 RTP Packet Header and Payload Creation

